月度归档:2011 年11月

AMD APU C-60

  除了面向主流桌面和移动市场的Llano APU,AMD Brazos APU平台也将在第三季度迎来升级,其中一款型号“C-60”,将会支持Turbo Core动态加速技术。

    Turbo Core技术是在Phenom II X6系列六核心处理器上首次引入的,未来APU和推土机产品都将全面支持,而且和Intel Sandy Bridge处理器上的Turbo Boost 2.0技术类似,也会同时支持CPU、GPU两部分的协作加速。

    C-60 APU在基本规格上与现有的Ontario C-50几乎完全一致,也是两个x86山猫架构核心与DX11图形核心,只是后者改名叫作Radeon HD 6290,基础频率分别为1.0GHz、276MHz,二级缓存1MB,但是根据应用负载的不同,处理器核心可以动态加速到最高1.33GHz,图形核心则可达400MHz,幅度分别为33%、44%,但不清楚二者是否可以同时达到最高频率(有点儿悬)。

    更关键的是,C-60的热设计功耗并不会因此而增加,仍然会停留在9W。

    至于竞争对手,应该是Intel的新款双核心上网本处理器Atom N570。

电池阻抗测试 交流电阻和直流电阻【转】

直流方法(即直流内阻)  直流方法是在电池组两端接入放电负载,根据在不同电流I1、I2下的电压变U1、U2来计算内阻值,由E-I1*r=U1、E-I2*r=U2得:r=(U1一U2)/(I2-I1)
  由于内阻值很小,在一定电流下的电压变化幅值相对较小,给准确测量带来困难,由于放电过程电压的变化,需要选择稳定区域计算电压变化幅值。
实际测最中,直流方法所得数据的重复性较差,准确度很难达到10%以上。
交流方法(即交流内阻)  注:电池的交流内阻随电池荷电状态的增大而增大。
  在电池两端加上交流电压 ,u=Umaxsinωt,测得产生的交流电流i=Imaxsin(ωt+φ),即阻抗是与频率有关的复阻抗,其相角为φ,而其模 r=|Z|=Umax/Imax。
  从理论上讲,向电池馈人一个交流电流信号,测量由此信号产生的电压变化即可测得电池的内阻。
  在实际使用中,由于馈入信号的幅值有限,电池的内阻在微欧或毫欧级,因此,产生的电压变化幅值也在微伏级,信号容易受到干扰。尤其是在线测量时,受到的影响更大,采用基于数字滤波器的内阻测量技术和同步检波方法可以克服外界干扰,获得比较稳定的内阻数据。
注:对于同一类型电池直流阻抗和交流阻抗一般成正比或其差值基本一致的。直流阻抗就是根据物理公式R=V/I,测试设备让电池在短时间内(一般为2-3秒)强制通过一个很大的恒定直流电流(目前一般使用10A-80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。    这种测量方法的精确度较高,控制得当的话,测量精度误差可以控制在0.1%以内。    但此法有明显的不足之处:    (1)只能测量大容量电池或者蓄电池,小容量电池无法在2-3秒钟内负荷10A-80A的大电流;    (2)当电池通过大电流时,电池内部的电极会发生极化现象,产生极化内阻。故测量时间必须很短,否则测出的内阻值误差很大;    (3)大电流通过电池对电池内部的电极有一定损伤。交流阻抗:因为电池实际上等效于一个有源电阻,因此我们给电池施加一个固定频率和固定电流(目前一般使用1KHZ频率,50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处理后通过运放电路计算出该电池的内阻值。   交流压降内阻测量法的电池测量时间极短,一般在100毫秒左右,几乎是一按下测量开关就测完了。呵呵。   这种测量方法的精确度也不错,测量精度误差一般在1%-2%之间。此法的优缺点:   (1)使用交流压降内阻测量法可以测量几乎所有的电池,包括小容量电池。笔记本电池电芯的内阻测量一般都用这种办法。  (2)交流压降测量法的测量精度很可能会受到纹波电流的影响,同时还有谐波电流干扰的可能。这对测量仪器电路中的抗干扰能力是一个考验。  (3)用此法测量,对电池本身不会有太大的损害。  (4)交流压降测量法的测量精度不如直流放电内阻测量法。在某些内阻在线监控的应用中,只能采用直流放电测量法而无法采用交流压降测量法。

众亮科技ABM 电池测试仪 3365

电池的使用在目前是日益广泛,电池的好坏更是影响到许多产品的工作效能,众亮科技有监于此积极开发出3365可程式交流阻抗表,有別于传统的电池测试器,众亮采用交流测试讯号来量测电池的内阻,因此就算是在长时间的量测过程中也不会消耗电池本身的电流,进而影响到量測的正确性。

众亮3365多功能交流阻抗表利用微控制器控制,且采用4-1/2位类比数位转换器使每一次的量测结果不仅准确而且稳定。2组数位显示器可同时显示交流阻抗值与直流电压值,10组面板设定记忆体外加独立显示器显示,并且具有标准的RS-232C 介面,使得操作的弹性更大,无论是读值记录或是自动化测试都十分合适。弹性与人性化的设计,众亮3365可程式交流阻抗表无疑地是你不二的选择。
产品特点
两个数位显示器可同时显示交流阻抗值与直流电压值
使用4位数大型(0.52”)七段显示器显示阻抗读值
使用4 1/2位类比数位转换器提高量测准确度
同时提供交流阻抗读值与直流电压值的比较功能并有Buzzer可供警示
提供读值平均功能 (AVERAGE)
显示保持功能 (HOLD)
每秒高达5次的攫取速度
提供400mΩ, 4Ω, 40Ω三個阻抗量測檔位,最高100μΩ解析度
提供3V, 30V两个电压量测档位,最高1mV解析度
标准RS-232C介面
10组面板设定储存唤回功能
自动保存开机前之设定状态,开机后自动回复原先所使用的记忆设定
 
产品规格
 
型 号: 3365可编程阻抗表
测量交流阻抗
量程:400mΩ/ 4Ω/ 40Ω
量程选择:手动,0Ω adj.
精确度:±0.5%rdg.±8dgt.
分辨率:100uΩ/ 1mΩ /10mΩ
显示:9999 (4-digits) LED
测试频率:约1KHz
测量直流电压
量程: 3V/ 30V
量程选择:手动
精确度: 0.5%rdg.±6dgt.
分辨率: 1mV /10mV
显示:±9999 (4-digits) LED
一般特性
阻抗显示比较:HI/GO/LO LED Display with Buzzer on/off Setting
直流电压显示比较:GO/LO LED Display with Buzzer on/off Setting
前面板设定的存储/调用:10组
接线方式:4线测试
平均值功能:Fixed 5 times with LED Indicate
锁定功能:Can Hold Display Value with LED Indicate
交流阻抗显示:7-Segment Red LED 0.52
直流电压显示:7-Segment Red LED 0.31
接口:Standard RS-232 Interface, Data Transfer Rate Only 9600 bps
一般规格
电源:AC115V/230V±10V,50/60Hz
功耗:约25VA
热机时间:约30分钟
工作环境:80%R.H. (+5°C to 30°C), 50%R.H. (+31°C to 40°C)
存放环境:-10 to 70℃, <80%R.H.
尺寸:213(W) x 88(H) x 394(D) mm
净重:3.4Kg
附件:电源线×1,操作手册×1,测试线×1